Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays.

نویسندگان

  • Jessica E Koehne
  • Hua Chen
  • Alan M Cassell
  • Qi Ye
  • Jie Han
  • Meyya Meyyappan
  • Jun Li
چکیده

BACKGROUND Reducing cost and time is the major concern in clinical diagnostics, particularly in molecular diagnostics. Miniaturization technologies have been recognized as promising solutions to provide low-cost microchips for diagnostics. With the recent advancement in nanotechnologies, it is possible to further improve detection sensitivity and simplify sample preparation by incorporating nanoscale elements in diagnostics devices. A fusion of micro- and nanotechnologies with biology has great potential for the development of low-cost disposable chips for rapid molecular analysis that can be carried out with simple handheld devices. APPROACH Vertically aligned multiwalled carbon nanotubes (MWNTs) are fabricated on predeposited microelectrode pads and encapsulated in SiO2 dielectrics with only the very end exposed at the surface to form an inlaid nanoelectrode array (NEA). The NEA is used to collect the electrochemical signal associated with the target molecules binding to the probe molecules, which are covalently attached to the end of the MWNTs. CONTENT A 3 x 3 microelectrode array is presented to demonstrate the miniaturization and multiplexing capability. A randomly distributed MWNT NEA is fabricated on each microelectrode pad. Selective functionalization of the MWNT end with a specific oligonucleotide probe and passivation of the SiO2 surface with ethylene glycol moieties are discussed. Ru(bpy)2+ -mediator-amplified guanine oxidation is used to directly measure the electrochemical signal associated with target molecules. SUMMARY The discussed MWNT NEAs have ultrahigh sensitivity in direct electrochemical detection of guanine bases in the nucleic acid target. Fewer than approximately 1000 target nucleic acid molecules can be measured with a single microelectrode pad of approximately 20 x 20 microm2, which approaches the detection limit of laser scanners in fluorescence-based DNA microarray techniques. MWNT NEAs can be easily integrated with microelectronic circuitry and microfluidics for development of a fully automated system for rapid molecular analysis with minimum cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Carbon Nanotube Field-effect Transistor Arrays for Detection of Her2 Overexpression in Breast Cancer

Title of Document: DEVELOPMENT OF CARBON NANOTUBE FIELD-EFFECT TRANSISTOR ARRAYS FOR DETECTION OF HER2 OVEREXPRESSION IN BREAST CANCER Konrad Hsu Aschenbach, Ph.D., 2011 Directed By: Professor Romel D. Gomez, Department of Electrical and Computer Engineering We developed a carbon nanotube biosensor platform that was deployed at the National Cancer Institute and successfully detected the HER2 on...

متن کامل

Biochemical Sensors Using Carbon Nanotube Arrays

Magnified carbon nanotube nanoelectrode array. The reduction of cost and time is the major concern in clinical diagnostics based on molecular analysis. Low-cost microchips are particularly desired for health monitoring and biomarker detection in NASA’s space exploration, due to the fact that it is not possible to take the supporting facilities used in today’s clinical lab into outer space missi...

متن کامل

Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays.

A novel parylene-embedded carbon nanotube nanoelectrode array is presented for use as an electrochemical detector working electrode material. The fabrication process is compatible with standard microfluidic and other MEMS processing without requiring chemical mechanical polishing. Electrochemical studies of the nanoelectrodes showed that they perform comparably to platinum. Electrochemical pret...

متن کامل

Developing nucleic acid-based electrical detection systems

Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of po...

متن کامل

Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength

Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 50 10  شماره 

صفحات  -

تاریخ انتشار 2004